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A STUDY OF DAMPING IN NONLINEAR OSCILIATIONS

By

Mourice L. Rasmussen
Stanford University

and

Donn B. Kirk
Ames Research Center

SUMMARY

An investigation is made of nonlinear oscillations in which the damping
and static moments are represented by arbitrary polynomial functions of the
dependent variable. When the nonlinear damping is small but the static nonlin-
earities arbitrarily large, an approximate solution is established which leads
to expressions for the damping decrement involving elliptic integrals and
gamma functions in special cases. An "effective linear damping" is defined and
a generalized formula for this parameter is obtained that is valid for a wide
range of nonlinearities in both the damping and static moments. This formula
is useful, for instance, in deducing the dynamic-stability parameters of
missiles observed in nearly planar motion in free flight.

INTRODUCTION

Many physical systems are describable only in terms of nonlinear ordinary
differential equations. One example is the large-amplitude pitching motion of
hypersonic aerodynamic configurations for which the frequency can be strongly
dependent on amplitude.l In the analysis of ballistic-range data, it is
desired to deduce the aerodynamic properties, linear and nonlinear, from obser-
vations of a given set of oscillations. Toward this end, a knowledge of the
effects of the nonlinearities involved in the differentisl equations governing
the motion is very important.

In this study, we will be concerned chiefly with the damping of oscilla-
tions of nonlinear systems. Although we will be interested in solutions to the
nonlinear equations for their own sake, the eventual goal will be to derive
formulas gllowing the extraction of both linear and nonlinear damping param-
eters from a set of data. From the standpoint of aerodynamics, this goal is
equivalent to determining from data the dynamic-stability parameters of a mis-
sile oscillating in a plane. A theoretical study indicating the form of the

IAlthough the present anaslysis is applicable to a wide variety of oscil-
latory phenomena, the text is cast in terms of pitching oscillations of bodies
having nonlinear damping and static moments in flight in a medium of constant
density.
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nonlinearities to be expected in the dynamic-stability parameters can be found

in reference 1. Aspects of obtaining free-flight damping in a conventional
wind tunnel are discussed in reference 2.

Since we will be interested in problems in which some of the nonlineari-
ties may be large, conventional methods of analysis in which all nonlinearities
are considered small (see, e.g., refs. 3 and 4) are not always suitable. Two
methods that treat large nonlinearities in the static moment have been devised
by Murphy: a perturbation technique (refs. 5 and 6) and a quasi-linear tech-
nique (ref. T) that yields results essentially the same as those of Coakley,
Isitone, and Maas (ref. 8). Although these methods are quite general in that
they are applicable for combined pitching and yawing motions, only cubic static
moments are discussed, and explicit damping formulas for only linear damping in
planar and near-circular oscillations are derived and plotted. Redd, Olsen,
and Barton (ref. 9) derived formulas for the effective damping of nonlinear
oscillations, but considered the static moment to be linear.

Many aerodynamic systems are not describable by cubic static moments, and
quintic or higher order polynomials are often essential for proper data reduc-
tion. There is reason to expect that if the static moment requires description
by higher order polynomials, then the damping moment will also. It is desir-
able, therefore, to understand the influence of arbitrary nonlinear damping and
static moments on oscillatory motions. The intent of the present paper is to
contribute to this understanding.

The analysis proceeds along two distinct lines after appropriate transfor-
mations are used to render the original second-order differential equation
into an equivalent integral equation on the one hand and an equivalent first-
order differential equation on the other. By means of the integral equation,
for which a special exact solution exists, an approximate solution is found
that is valid for large damping nonlinearities and small effective static non-
linearities. For small damping but arbitrarily large nonlinearities in the
static moment, an approximate solution is then found by utilizing the first-
order differential equation. For this latter line of analysis, the damping
decrement can be conveniently represented by an "effective linear damping,"”
which can be evaluated in terms of quadratures leading to elliptic integrals
and gamma functions in special cases. Based on limiting values of the quadra-
ture expressions, a simplified approximate formula for the effective linear
damping is devised that is extremely accurate for a wide range of nonlinear
parameters and, further, is amenable to data-reduction technigues.

NOMENCIATURE

A,B constants of integration
a amplitude variable defined by equation (28b)
b defined by equation (81b)

Do defined by equation (57c)




U,z

complete elliptic integral of second kind

arbitrary function occurring in equation (27)

S
)5

s>0

effective linear damping defined by equation (66)

damping-moment coefficients

defined by equation (11)

Ho/v
1 HS S )+
5+ 51, Ja (eq. (54))

defined by equation (81c)
complete elliptic integral of first kind

modulus of elliptic integrals

S+1
LM

static~moment coefficients

Mg - Hg

Msym®/v2 or Mgy,°/v2 (eas. (h2), (54))
defined by equation (18)

defined by equation (30=z)

defined by equation (34)

summation index

independent variable in equation (1)

initial value of t

functions defined by equations (3), (7), and (8)




Yz/ Yaz
value of Y for zero damping

mth order expansion term in Y (eq. (56))

dependent variable and amplitude of nonlinear oscillation

1 a
2 2
HOS

a particular maximum amplitude

nth maximum amplitude

(n+l)th maximum amplitude

initial amplitude of ¥y

zeroth order approximstion (eq. (50))
defined by equation (79b)

tan™(H,/2v) or sin™ Y(H, /(M)
mz(2mg, + mg)

ol /2 12 By £ 0, (™| ™% 4z Ty =0

frequency variable defined by equation (28c)

angular frequency
BASIC ANATYSIS

The Basic Egquation

In this study we wish to consider oscillations that are influenced by non-
linearities in both the damping and static forces or moments.
that the nonlinearities are functions of the dependent variable only.

Consider a nonlinear oscillation to be governed by the following differ-

ential equation for y = y(t):

a2y § s\ 4y § s
(—1;5 + HSy "d.t + MSy y = 0
o 5§20 520

N

We shall assume



The middle term represents the damping moment, the last term, the static
restoring moment. We shall refer to the term represented by s = O in both the
damping and static moments as the linear moment. Similarly, we shall refer to
polynomials terminated by s =1, s = 2, and s = 4 as quadratic, cubic, and
quintic moments, respectively. When Hg and Mg are nonzero only for even
values of s, the motion is called symmetric; when Hg and Mg exist for odd
values of s, the motion is called unsymmetric. Symmetric motions are of the
greater interest, but unsymmetric motions, such as oscillations sbout a trim
angle in aerodynamics, do occur.

Equation (1) includes as special cases several well-known equations. If
Ho # 0, Mg # 0, but Hg = Mg = O for s # 0, equation (1) is linear and has a
well-known solution. If Hy = -Hp, = -€ and Hg = O, s % 0, 2; My # 0 and

Mg = 0, s % 0, then equation (1) reduces to the classical Van der Pol equation
d2y dy
—_ 2 _ —_ =
o e(y2 - 1) gf + Mgy = 0 (2)

If all the damping terms vanish, leaving only a nonlinear restoring moment,
then the motion is periocdie. If, in addition, the restoring moment, the last
term in equation (1), is a quintic or less in ¥y, then exact solutions may be
found in terms of elliptic functions for symmetric oscillations.

Equivalent Pair of Equations

It is convenient to seek a transformation that will express equation (l)
in such a form that the first derivative of the dependent variable does not

appear.

let us introduce two functions wu(t) and z(t) so that
y(t) = u(t)z(t) (3)

Since we have introduced two functions to replace one, we have an arbitrary
condition at our disposal. We will select wu(t) so that the differential
equation for z(t) does not explicitly involve its first derivative.

If the transformation given by equation (3) is substituted into
equation (1), then

H

d®z (2 du 5,5\ dz ,| 1 &% Zs du) s, sl _

F+ udt+ ZHSuz Tt udt2+ Z<M5+u r z =0
520 520

(4)

It does not suffice to set the coefficient of dz/dt in equation (4) equal to

zero in order to specify the needed equation for wu. If this were done, a
term involving dz/dt would appear in the coefficient of 2z owing to the




presence of dau/dtz. The form of the coefficient of dz/dt, however, suggestks
the following relation for u:

1 du lm1 s s
ECsE EZaSHSu z (5)

Here the ag are constants to be determined so that the dz/dt terms vanish
in equation (4).

Taking the derivative of equation (5) to determine d2u/dt® and substitut-
ing into equation (4), we find

2 Z ; I a, H ’
d =z S s_s| dz S S s du s_s8
—_— <—as+ l - - as>Hsu 7z, —_ 4 MS+<— -_— a‘S-_+ |>_ 11"z 7 = O

>0 §20
(6)

We now eliminate the derivative dz/dt from equation (6) by requiring that its
coefficient vanish. This can be done term by term if

o = 2
ST 2+ s
Hence,
iz \" Hy 1l dul..s_s _
v + 2;(#8 - aral dé)u z°lz = 0 (7
520

H
1 du _ _ s s s
ol E: 55 Uz (8)
520

Equations (7) and (8) are the ones we have sought. These equations
together with equation (3) replace the single equation (1) for y by two
simultaneous equations in the new variables wu and z. It may appear that the
solution of the two simultaneous equations for u and z would be more compli-
cated than the single equation for y. We will find, however, that the equa-
tions become uncoupled for special values of Ms and Hg, and exact solutions
may then be found. Moreover, transformations of these equations will yield a
single integral equation for y and a single first-order equation for y that
are appropriate for establishing approximate solutions.

To see more clearly the nature of equations (7) and (8), let us write
them in a slightly different form. Substituting equation (8) into equation (7)
gives




presence of dzu/dtz. The form of the coefficient of dz/dt, however , suggests
the following relation for wu:

—
1l du 1
a T*® c - EZ'aSHSuSZS (5)

Here the ag are constants to be determined so that the dz/dt terms vanish
in equation (4).

Taking the derivative of equation (5) to determine dzu/dt2 and substitut-
ing into equation (4), we find

s_s| dz S s du
Z(—as+l-— >Hsu =t ZI:MS+<-—2—aS u d{]uz z =0

820 520

(6)

We now eliminate the derivative dz/dt from equation (6) by requiring that its
coefficient vanish. This can be done term by term if

a, = 2
S 2 + s
Hence,

1l du\..s_s _

EZ(# + - g dé>u z =0 ('7)

520
H

ldu__ S S s

T 2 +s 47 (8)

Equations (7) and (8) are the ones we have sought. These equations
together with equation (3) replace the single equation (1) for y by two
simultaneous equations in the new variables u and z. It may appear that the
solution of the two simultaneous equations for u and z would be more compli-
cated than the single equation for y. We will find, however, that the equa-
tions become uncoupled for special values of M, and Hy, and exact solutions
may then be found. Moreover, transformations of these equations will yield a
single integral equation for y and a single first-order equation for y that
are appropriate for establishing approximate solutions.

To see more clearly the nature of equations (7) and (8), let us write
them in a slightly different form. Substituting equation (8) into equation (7)
gives




4

d%z 5_8 Hy s.s\

E;§-+ }:N%u z° - ;z 55 Uz z =0 (9)
&0 >0

Equation (9) may be simplified by introducing new parameters, ﬁs, defined by
s | Hy 2

% .5 S _ s_S
ZHSuz = Ze+suz (10)
£20 820

The square of the series in equation (10) may be arranged so that H, may be
identified as

s
— He_
i = ‘nflsm (11)
(2 + m)(2 + 5 - m)
m=0
Equation (9) becomes
a>z = s_s
—3 t }:(bg - Hs)u z”lz = O (22)
at
520
With equation (7) written in this form, special exact solutions suggest
themselves.
Special Exact Solutions
It can be seen that when
Mg =Hg, s#0 , (13)
equation (12) reduces to
2 H
d z (]
— M - — =0 l)'l'
at® (0 :>Z (a4)
which has the general solution
Z = COS T (15)
where 5
= Hy

T=V(t-to), V=MO"T




and t, 1s an arbitrary constant. The other arbitrary constant which would ,
normally appear has been suppressed since it will appear in the solution of the
equation for u(t), equation (8).

Consider now a two-term damping moment given by

Ve \ Y o (m o+ ryn) W (16)
sV g T \Jo T Y ) &t

£20
Here we have kept the linear term H, and one nonlinear term of arbitrary

power n, where n 1is an integer. With this damping moment, equation (8)
takes the form

H I§1
- 29 - nn
2 2 +n uz (a7)

< -
&2
c

A solution to equation (17) may be found by introducing the transformation

UF =P e-Hot (18)
so that
P T EE‘Ijnn o F (29)
which has the solution
n -2
p=y2eo o(a +2mjnnft z e-EHOt' at" i (20)

where A 1is a constant of integration.

From equations (10) and (13) we find that for this special case the only
nonzero values of Mg and Hg are given by

3
H.H
- of'n
Mn =1 = 2 +n
) (21)
H2
M —- ﬁ - .____n_—
2n 21 2
(2 + n)

~

Finally, by combining the solutions for u(t) and z(t), we find that the
function y(t) can be expressed as a function of 71 = V(t - to) by

e e



(22)

y(t) =
1 nHp

T —E———
+ J[. e 2 Y  cos
voo (2 +n)vdo

where Yy, = y(t = to) and t, are arbitrary constants, and y(t) is a general

solution to the following equation:

a%y dy
t

n
— + (Hy + Hpy )E_ +1 M - +

2
HO HOHD. n
.
dat

2 +n

where n 1is an integer.

(2 +n)°

2

H
B -y y=o0 (23)

Solution (22) to equation (23) was first given by Smith (ref. 10),

although by an entirely different derivation.

Subsequently, we shall use this

exact solution as a basis of an approximate solution that does not restrict
the nonlinear restoring terms M, and Mén to the values given by equation (21).

It is interesting to see the explicit forms that solution (22) takes for

specific values of n.
which are most likely to be of practical interest.

n=2: Hot

Here we present the solutions for

n=2and n=25,

(24)

Nl

H _ 2HoT

B - —2¢ v [1 - %-sin ¥ sin(27 - V) - % sin @ sin(i4r - @)}

sin ¥ = R sin @ =

i

(25)

o



where B is a constant. Formulas (24) and (25) are useful becsuse they indi-

cate explicitly and analytically how the motion may be affected by arbitrarily
large damping nonlinearities.

The special exact solution (22) has the shortcoming that the nonlinear
static-moment terms Mn are not open constants, but are determined by the
damping-moment terms H, and H, as given by equation (21). We would like to
1lift this restriction and find approximate solutions for arbitrary values of
M,. To do this, we must take into account that the frequency may be variable
and recast the equations into more appropriate forms.

Equivalent Integral Equation

The two simultaneous equations that we shall deal with are (12) and (8),
which we rewrite here as

2 —

4z é + ZMsust z =0 (26a)
dt

>0
2 H
1 du S s,.8
— = -2
22 dt Ze+suz (26b)
520

where Mg = Mg - Hg. The parameters Mg may be viewed as the "effective"
static-moment parameters.

We introduce a modified version of the Kryloff-Bogoliuboff technique,
which is outlined in appendix A. Consider a nonlinear differential equation
having the form

d2x 2 dx
E_t—2+VX+f<X,'a€>=O (27)

where f is an arbitrary function of x and dx/dt, and V° is a positive
quantity. If we assume that equation (27) has a solution of the form

x = a(t)cos 1 , T = (t) (28a)
then, as shown in appendix A, a(t) and 1(t) are determined by
1 . .
"= f(a cos T, -av sin T)sin T

da _ (28b)

dr 1 .
1 +— f(a cos T, -av sin 7)cos T
av

10




’ dr _ 1 .
= v[l + =z f(a cos 7, ~av sin v)cos T] (28c)

The amplitude variable, a, is determined as a function of T, the frequency
varisble, by solving equation (28b). Using this solution, a = a(r), one may
then find the relationship between T and the original independent variable
t by solving equation (28c) in the form of a quadrature

T t
toto=2 ] dr (284)
v e}

f
1+ —5cos 7'
av

Consider now the application of the modified Kryloff-Bogoliuboff equations
to our particular problem. To account for oscillations for which.;ﬁo < 0, we
shall select special values for the arbitrary parameter vZ. If My # O, then
we shall choose V2 = [Mg|. If M, = O, then we shall choose V2 = |Mpyn"l|,
where y, 1is a suitable characteristic amplitude of the motion. Noting that
z = a cos T, we may identify the function f(a cos T, -av sin 7) from equa-
tion (26a) as follows:

M
f=[-14+ }z —% aSu® cos® 1) vPa cos T (29)
v
>0

Expression (29), in this case, is not in convenient form to solve equa-
tion (28b) because the variable u is present, and u must be found as a
function of a(t) and T by combining equations (26b) and (28c) to eliminate
the varisble +t. Because this step cannot be easily accomplished, we instead
introduce a new variable, Q, defined as follows:

Hot

i,

Q=a22e ’ (302)

It now can be established that y is determined as a function of T by

HoT

y2(7) = Q(T)e- V cos2 7 (30b)

An equation for Q(+7) now remains to be found. From equation (30a) it
follows that

Hor
2 H
w2 eV d82 _ 49 _ § du® at _ Mot (30c)
dr dr 2 dt dr v

Substituting equations (26b), (28b), and (28c) into equation (30c), we obtain

11




q g=2 sHyT “

_2 S 2 T TV S Ho . f
VZE+SQ e cos T+<VCOST+281I1T>
daqQ s>1
dr

aveQ

f
1l +—~—2cCcOs T
a V2

(31a)

This equation is the more general counterpart of equation (19). The appropri-
ate expression for f in terms of Q and T is found from equation (29) to be

ﬁ sHyT
S S (U ;z - 2V cos®
av?
§20

Thus, when equation (31b) is used for
linear equation for Q(T) results.

TJ] COS T

(31b)

f in equation (3la), a first-order non-

It is, in general, too difficult to integrate equation (3la) for
= Q(7). Nevertheless, it is convenient to go a step further and find an
integral equation for

y that will serve as a basis for spproximate solutions.
We first note that f can be expressed in terms of v2 by using
equation (30b):
Hot
Lo=qe TV oy E-1 4 Z{J g3 1 (32a)
av
20
or
M
—£§ ={-1 + }Z —% y¥lcos T (32v)
av 14
520
Equation (31a) may now be expressed as
Ho'T
- — H ‘M
VT 2 S s s _8
e - =cos" 7T + (-1 + E; — R(T
Y }: 2 + s v = (7)
1 49 _ 521 520
Q= dr
M
1+ -1+ zz :% ys cos® T
§20
(33)
12




where

| H
L R(T) = 1? cos* v + 2 sin T cos® 7 (34)
Direct integration of equation (33) gives
V-1
( T HOT' 5 — . %
- —— |
e v y-z 2 coi T ZL > +sS ys - -1 4 }Z ;g ys R(+")|ar
s21 §20
| Q=(B +
|

(35)

Substitution of equation (35) into equation (30b) now yields an integral equa-
tion for y(T):

HoT
- =< o
2 cos® T
vy = =
T
Hot! -
- 2 1 H M
[ e v -2]2 cos= T ;z 5 s _ S .S ' 1
y e ST oY +|1 - R(~")] ar
1 s>1 5>0
-—2 -+
Yo -
M
1 +71-1 + z—gys cos® 7!
v
Jo 520

(36)

Here w? have)identified the constant of integration B as 1/y. 2, where
Yo = Y\T = 0).

If it is assumed that y = y(v) can be found, then, at least formally, the
corresponding relation for t(1) can be determined from equation (28d):

T (37)

T
t-ty= 1 '
J/rl +{ -1+
520
o

d
VM
24 ;% v cos® 1!

The integral equation (36) is interesting because it reflects roughly the
nature of a solution that one might expect for a nonlinear oscillation.

13




Furthermore, when vZ = M, > 0, ﬁs =0 for s>1, and Hy = O for s # 0,2, the
exact solution (22) for n = 2 is recovered immediately. Equation (36) will
thus be useful for a perturbation of this exact solution.

Equivalent First-Order Equation
We shall now derive the most useful and most important equation of this

analysis. ©Since y = uz, the first derivative of y can be written in terms
of uwand z as

dy _ {1dz . 1 du

at - y<; & tu EE) (38)
We now again introduce the modified Kryloff-Bogoliuboff equations, derived in
appendix A, so that =z = a cos v and dz/dt = -aV sin 1. In addition, we make

use of equations (26b), (28c), and (32b), and write equation (38) as follows:

1 Hg
-yltan T + = —_—yS
ypren T v 2; 2 + s y

dy _

520
dr ™
sin® 7 + cos® T }: —= v
Ve
520

(39)

The general second-order differential equation (l) with t as the inde-
pendent variable has now been reduced to a single first-order equation with 7
as the independent variable. The relation between + and v is again provided
by equation (37). Although equation (39) is equivalent to the integral equa-
tion (36) because it describes the same nonlinear oscillation, it has a very
different appearance.

Distortion Due to Nonlinear Damping

Equation (39) can immediately be used to determine where the maximum
amplitudes occur in a nonlinear oscillation. When there is no damping in an
oscillation, the motion is periodic, and it is easy to deduce that the maximum
amplitudes occur at Ty = n%, where n is an integer. For a general oscilla-
tion, the maximum amplitude occurs when dy/dT vanishes, and thus from equa-
tion (39) we deduce that

o1y B s
tan Ty = ';Zg+sym (40)
520

where y, = y(ty) is the maximum amplitude.

1k




Formula (40) indicates how much the maximum amplitude is shifted from the

point of symmetry, v, = nn. Consider a special simple example, namely, the
limit cycle for the exact solution (24). The limit cycle occurs when H, < O,
Ho > 0, and T = © and, in this case, equation (24) yields

COS T ()"'l)

(y)lim =

H

-_—2

i,

where

sin ¢ =

or

The value of y, from equation (41) is

[1 - sin @ sin(2T - 9)]

HO
2 o

Ho

tan @ = —

2v

and equation (40) now yields for this example

Ho
tan Tm = = E;

Hence,
T

m

Figure 1.~ Distortion of motion due to
nonlinear dsmping.

H
1 +-——§ ymé> = tan P

2Hg

nx + @

and the limit motion is distorted from
the symmetry position by an amount

¢ = tan~1(H,/2v). This motion is shown
in figure 1 for values of ¢ = 09,
-159, 459, and -75°. When |P| is
large, a substantial distortion of the
nearly cosine oscillation characteris-
tic of small nonlinearities is found,
and the oscillation is no longer sym-
metric about T, = nx.

15



EXACT SOLUTIONS FOR ZERO DAMPING .

It is interesting and instructive to see how exact solutions for zero
damping appear in the present formulation of nonlinear oscillations. Moreover,
these exact solutions will be useful later in approximations for nonzero

damping .

General Solution

Let us now consider only symmetric motions, so that s is even, and all
the damping terms are zero (HS = 0). The motion will be periodic and have a
maximum amplitude that we denote by yp,. We introduce a normalized form of y

by the transformation
=)
Y = <;L>
o} Jm

In addition, we introduce the coefficients mg defined by:

1\_llsyms
mg = N-al s >0 (42)

Note that if M4 # 0, mg is a ratio of the magnitude of the sth nonlinear
term of the static moment to the magnitude of the linear term. With this nota-
tion, one may express equation (39) for zero damping as follows:

dY 4 N -2y tan T (h3)

a
i . 5 s/2
sin® T + cos® T mgY,

20

Equation (43) can be immediately integrated if a transformation to a new
independent variable x = tan T is made. If the boundary condition is imposed
that Y, =1 when T = nx (n is an integer), then

om s+2
R N (R (1)
s>0

The zero-damping solution becomes complete when a relationship between 7
and t 1is established. This is done by means of equation (37), which now
becomes

16




t -ty =1 dr’ (45)

. s/z2
sin® 1! + cos@ T'}z m Yo

520

; Formula (h5) is not always a convenient expression to use because Y, is gen-

| erally an implicit function of <. Consequently, an alternate expression in

; which t is determined as a function of Y, is often more useful. The alter-
nate formula may be found by changing varlables according to equations (43) and
(44), and thus obtaining

b 1 1
ay
| t - thy = 25 o (46a)
S+2
2m =
Yl Z S 1 - Y,
°© 2 + s o
820
o

for

nn < T < 0nn+ % L Iy £

Expression (46a) has been obtained by more conventional methods. If
m, = O when s > 6, then equation (46a) can be evaluated by elliptic integrals
(see refs. 11 and 12). The angular frequency w of the oscillation is defined

by
z=1 to (46b)
s+2
2
o + s 1-%,

An approximate formula for the frequency with arbitrary values of m, has been
derived in reference 13.

Special Case of a Cubic Static Moment

For the case of a linear-plus-cubic moment, mg = O when s > L, it is
easy to find an explicit function for Y, () from equation (44); namely,

17




(w/mz)cos® T .
T, = (47)
B
2 v +mg cos® T +./(sin2 T + my cos® 1) + pcos? 7

sin

where K = mp(2m, + mz).

With this explicit representation, equation (37) yields the following
relation between T sand t

.
dr’ (48a)
2
A quin2 " +my cos® 7')" + ncost 7!

It follows that the frequency is given by

/2
ar (48p)
A JQsina T + mg cos? 0%+ g cos® T

It is interesting to compare equation (48b) for the frequency with the
corresponding formula (L46b), which may be evaluated in terms of elliptic inte-
grals. The guadrature (48b) is a proper integral and may be evaluated
numerically without difficulty.

<l

t -ty =

gl<
aln

Formulas (48) contain four possible cases of interest, depending on the
value of the moment terms Mg and M. To discuss them, we adopt the following
convention. If En is positive, it is called stable; if it is negative, it
is called unstable. The various possibilities are stated by describing the
term M, and then M>. For a cubic static moment we thus have the following
cases:®

Stable-stable and stable-unstable static moment

N\
T > 0, v = Tg, m = 3 SR ST (Comemenaie)

Unéiable—stable sfgtic moment & (49)
My < O, Ve = ]Mol, m, = -1 2<my < »

Pure cubic static moment
W, = 0, v = May,® >0, my = 0, mp = 1 y

ZNote that if ms < =1 for the stable-unstable case, tumbling motion
results; also, if 1 <mp < 2 for the unstazble-stable case, unsymmetric
motion about a trim angle occurs. Since neither of these cases 1s covered in
the present analysis, initial conditions must be such that the restrictions on
meo are observed.

18
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The oscillations (eq. (47)) for the cubic moments are plotted in figures 2(a),
'(b), and (c) to show the effect of my for the various cases. In these fig-
ures, JY; = y/¥m 1is plotted versus the transformed independent wvariable, T,
over a quarter cycle of oscillation. As indicated by egquation (42), mp is a
ratio of the magnitude of the nonlinear part of the static moment to the magni-
tude of the linear part. The value mp = 0 represents the pure linear case,
my = o the pure cubic case. In figure 2(d), y/ym is plotted versus the orig-
inal independent variable, t, normalized in such a way that the curves have the
same frequency. This is equivalent to comparing each nonlinear moment with a
different linear moment, in each case the linear moment being chosen to give
the same frequency of oscillation as did the particular nonlinear moment. With

1.0q 1O

~
3
5%|<

o]

o]

T T

(a) Varistion with T; stable-stable 1-3 (b) Variastion with 7; stable-unstable 1-3
static moment. static moment.

Stable —unstable cases

Unstable~ stable coses

o}

N 0 1 2wt

(¢) Veriation with +T; unsteble-stable 1-3 (a) Variation with t.
static moment.

Figure 2.- Effect of mz on oscillatory
behavior.



this kind of plot, it can be seen that most nonlinearities in the moment have
no drastic effect on the appearance of the motion (although the frequency is
greatly affected). For instance, all stable-stable cases would fall within the
shaded region of figure 2(d). Furthermore, the vast majority of stable-
unstable cases ever encountered would be bracketed by the curves labeled 0.0
and -0.8; most unstable-stable cases would be bracketed by the curves labeled
2.5 and *.

APPROXIMATE SOLUTIONS

We now wish to find solutions for arbitrary values of Hg and Mg. With
the use of the special exact solutions already discussed, it is possible to
find approximate solutions valid when the parameters Hg and Mg are small in
a certain sense. Essentially, we shall find first-order perturbation solu-
tions to the exact solutions that are special cases of equations (36) and (39).
We shall consider only symmetric motion and hence make the restriction
Hg = Ms = 0 when s is odd.

Perturbation Solution Using the Integral Equation

Because the integral equation (36) has an exact solution for a special
case, that is, when My > O and Ms =0, 8> 0, and wvhen Hg = 0, s > L, it is
natural to ask if there exists a small perturbation of this exact solution in
which certain parameters are small in an appropriate sense. The exact solu-
tion can be expressed in the form of equation (22), with n = 2,

O‘T
e- v 0082 T
y2 (1) = " (50)
(o) Hor®
H T -
1 2 V 2 1 '
F + E-; e cos ' dr
o o

Expression (50) can be considered as a zeroth order approximation. Since equa-
tion (36) is an integral equation, it is straightforward to use equation (50)
and determine a first-order approximation to equation (36) as a first step in a
scheme of successive approximations.

Consistent with the zeroth approximation, we require that Mo > 0, and
that

Z _1:1_2 o << 1 (51a)
s>2
and
z M sm2l oy (51b)
(2 + 8)Ho

s>4
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.With these conditions, we can expand the denominator of the integrand of the
integral in equation (36) in a Taylor series and keep the first term. The
first-order approximation can now be obtained by replacing the y2 that
appears under the integral by the zeroth-order approximation y?o) and retain-

ing terms consistent with equations (51). The first-order approximation thus
can be written as

2Bt
v = e ¥ cos® 1
(1) T
1 - OJ 2 _cos? T';{j Hs s-2 M, s-2 (+! Ho =2 4
— - = 2 t t
72 e v L Sts Y(O) 2 Y(o) R(r )+_2v Y(o)c08™ 7 dr
o) s>2 s>2

(o) - pill

(52)

Formula (52) for the first approximation is expressed in terms of quadra-
tures involving the zeroth-order approximation. In general, these quadratures
are difficult to evaluate in terms of tabulated functions. For the special
case when the nonlinear damping terms are zero, however, the quadratures can be
evaluated with the use of elementary functions. We now write the corresponding
formal solution for the frequency function T as a function of t. Starting
with equation (37) and using the approximations consistent with the first-
order solution, we obtain

T/ T %
v(t - tg) =7 -\jp 2; Eg yS \Jcos® 1! ar! (53a)
o S v (O)
2

where, as before, y%o) is given by equation (50). Since higher order products

of ﬁs‘ are neglected in the first approximation, we can also express T
explicitly in terms of t by rearranging equation (532) to read

v(t-tg) M
reve -t v [ O ) 2%, cos® 7 ar (53)
° s>2

In many practical problems of interest in aerodynamics, the nonlinear
restoring-moment terms are not small, and thus the above first-order approxima-
tions are not particularly useful. The damping, however, is usually small;
consequently, results having wide application can be obtained from a perturba-
tion solution of the first-order differential equation (39).
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Perturbation Solution Using the First-Order .
Differential Equation

Let us write equation (39) in a normalized form that naturally suggests a

perturbation procedure. We introduce a characteristic amplitude Vg that we
shall identify later and define the following symbols:

2
H

={X =2
1= <§a> ? h=3

s
= =Yg s s even

(54)

Since ﬁs ~ Mg, mg 1is essentially a ratio of the magnitude of the sth non-
linear term of the static moment to the magnitude of the linear term; h is a
similar ratio for the damping moment but multiplied by a constant, l/(2 + s).
With this notation, equation (39) becomes

-2Y[tan T + 1 Z hSYS/Z

>
aq€. 520 (55)

. s/2
sin® 1 + cos? 7 Ez meY

s>0

Since an exact solution exists for equation (55) when h = 0, namely,
equation (44), we seek a perturbation solution of equation (55) valid when
h << 1. Therefore, we consider that h << 1 and hS = 0(1) and assume over a
half cycle, at least, that Y(t) can be expanded in a series of the following
form:

[oe]

¥(e) = ) W (n) (56)

m=0

Substituting equation (56) into (55), collecting terms, and requiring that the
coefficient of each power of h wvanish identically yields an infinite set of
equations for the functions Y_. We shall confine our interest to the first-
order perturbation and thus to only the functions Y, and Y,. The equations
for Y, and Y, are found to be

Y, = 2¥, tan 7
dr D

(57a)
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dy s/2 s/2
b 2 tan 1T|_:.2 2 _ 5 _
D, - + ) sin® v + cos= 7T % <} -§> mSYO Yl = 2YO % tho
s>0

(o}
520

(5Tb)

where

- . s/z

D, = sin2 1 + cos® T }: m. Y, (57c)
§20

With the use of equations (57a) and (57c), it is not difficult to verify that

an integrating factor for equation (57b) is merely sec2 T, so that equa-
tion (5Tb) can be expressed as

éL(DO sec2TY,) = -2 sec® 1Y, thglg (58)
- ;
520

With the above equations we will be interested in the solution between two
consecutive maximum amplitudes, say the nth maximum amplitude, y_, and the
(n+1)th, yp41- The zeroth order equation (5Ta) yields a periodit solution
with a given maximum amplitude. We now select y, so that the maximum ampli-
tude squared of the zeroth order solution is the mean of the squares of the
nth and (n+1)th meaximum amplitudes

Yo~ = %(ynz + Ya+1)

We can now take equation (44) to be the
solution of (57a) and identify yp
with ygp. The situation is shown in

sketch (a).

e

Correct within the first-order
spproximation, y, occurs at T = nu
and yp4,; occurs at T = (n + 1)m.
- We integrate equation (58) so that
(nfl)w Yl(ni'[) = —Yl(nst + ﬂ)

Sketch (a)

T 2
Y,(7) = - 2_9$i1f sec® 7' Y z hsxi’ ar' (59)
° (n+Z >0
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The function Yl(T) is expressed by a quadrature. Since YO(T) can be written.
explicitly as a function of T only for special cases, such as the cubic
restoring moment (eq. (47)), a general explicit form for the integrand cannot
be found. With a change in variable, however, the quadrature can be expressed
in the form of elliptic or hyperelliptic integrals.

Consider a change of variable in the integral of equation (59) to Yo, as

defined by equations (57a) and (44). Then, in terms of Y, the function Y,
can be written as

-Y,G(Ys)
Y (1) = o0 (60a)
S+2
Mg YfET'
5 +s |2 T sY,
520
where
Yo
8+2
s 2 Y = 'S/2 '
(2 + sY, hg¥o v,
Glyy) =+ [ 22 520 (60p)

S5+2
2m -
' s vyt 2
Y, % =1 - 1,

J 20
o

for nn< 1< (n+ 1)n. The plus sign is used when [n + (1/2)In< 7 < (n+1)x
and the minus sign when na < 7 < [n + (l/2)]ﬂ. It is clear that Yl(T) and

G(Y,) are odd functions of {r - [n + (1/2)]n}. Wnen the polynomial in the
radical of equation (60b) is a quartic or less, then the integral can be eval-
uated in terms of elliptic integrals and elliptic functions. We shall eval-

uate explicitly the complete integral later for special cases of the damping
decrement.

The corresponding first-order form of the frequency equation (37) can now

be determined. Inserting equation (56) into (37) and keeping only first-order
terms in h yilelds

T '
v(t - tg) = dr
. s/2
sin2 7' + cosZ 7! }: mY,
1 20
n+z)7
(0+3) S-2
cos® 7' Y4 Z smSYO2 ar'
-4 520 +0(n2)  (61)
2 2
s/2
sin® 1' + cos® 7! }Z mgY¥,
(n+3)m 520
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where here t = t, when 7 = [n + (1/2)]1n. This completes the formal first-
order solution. Because the first-order integral in equation (61) is very com-
plicated, we shall not investigate it further here, but merely note that it can
be integrated numerically without great difficulty when Y, and Y, are known
functions of 7.

THE DAMPING DECREMENT

We now wish to derive formulas that portray the distinguishing features of
the nonlinear oscillation. Of an oscillation that is sufficiently well-defined,
two distinguishing features are the maximum amplitudes and the half period.

(By half period, we mean the time interval between two successive maximum ampli-
tudes of the motion. In this sense, it is a pseudo-period, since the motion is
not necessarily periodic. Given the half period, we can likewise define an
angular frequency.) A pertinent parameter to consider is the ratio of two suc-
cessive maximum amplitudes, called the damping decrement. A slightly more sig-
nificant parameter is the logarithmic decrement because it is a constant for a
strictly linear oscillation and thus forms a good standard for comparison.

Decrement for Small Damping

Consider now the first-order solution that neglects terms of order h® in
equation (56); that is,

Y(7) = Yo(7) + ny (1) + 0(h®) (62a)

From this expression we find Yn and yp.. to be given by

(%)2 = 1 + nY (n1) + O(b®) (62b)
G%;_l)g =1 +ny (av + ) + 0(n=3) (62¢)

Noting that Yl(nﬂ) = -Y,(nn + =), dividing one equation by the other, and
expanding for small h, we find the damping decrement to be

Gﬁ)z = 1 - 2nY,(nn + 1) + O(n®) (63)

Taking the logarithm of this expression and again expanding for small h
yields the following formula for the logarithmic decrement:

In
Yn+1

in = -nY, (an + @) + 0(n2) (64)
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Here Yl(nﬂ + ) can be evaluated by equation (59) or (60). Before proceeding ,
however, it is convenient to modify equation (64) by defining an effective

linear damping.
Effective Linear Damping

In a strictly linear oscillation it is known that the logarithmic decre-
ment is a constant with the value

y H.x
in n = -—O_ 6
Yn+a, 2v ( 5)
- 3
where Vv 1is the frequency defined by V2 = IMOI- Analogously, we can define
an effective linear damping Hoe by
Hy = H
Yn Oe v Og
in = — —— ——
yn+l 2w h 2w o (66)

where now, consistent with the first-order analysis, we define the frequency
w by

NI+
v _ 1 dr
T (673-)
sin® T + cos® 7 E: m YS! 2
nx 820
or
1
v o1 d¥,
TR (6To)
s+2
S
Yo zgj 2vs |t Yo
20
o 2

SThe logarithmic decrement can be written in more conventional form if we
introduce the so-called damping ratio & as d = HO/QMO. Then, realizing that

V= /Mb =-jho - (Hoz/h) for a linear oscillator, we have

In
Yn+1

- biCo)
J1 - 8°

For a linear system, the logarithmic decrement is independent of amplitude,
ahd, therefore, we can also write

in

In
Yn+2

210

) J1 - 82

in
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- We now combine equations (64) and (66) to get

H%z - 227 (ax 4 1) + O(n) (68)

Expression (68) is an important formula, and we shall investigate it in some
detail.

General Formula for Effective ILinear Damping

The formal first-order value for the effective linear damping can be
found by evaluating Yl(nn + @) in formula (68) by (60) (noting that
Yo(nﬁ + 1) = 1)

St2

1
(‘ mg S s/2
Z 5T s 2+ SYO hSYO dYO

s50 550
° Y > 5 |1 YSE+2
o 2 + 5 o
J 520
o]

where w/v is given by equation (67b). Formula (69) can be explicitly evalu-
ated in terms of tabulated functions for restricted combinations of mg. We
shall investigate these special solutions in order to gain an appreciation for
the influence of the nonlinearities on the damping, and to ascertain the asymp-
totic values of the general formula in various limits. On the basis of this
information, an approximate, but quite general, formula can be established
that is valid for almost the whole range of possible values of the nonlinesar
parameters.

Ho

e

<lE

(69)

lgf\fﬂ sl
B

Cubic Damping and Cubic Static Moment
Formula (69) can be evaluated in terms of elliptic integrals for a cubic
static moment; that is, m; = O when s > k. For the sake of simplicity, we

also consider only a cubic demping moment; that is, H; = O when s > 4. For
this case, formula (69) appears as

1w * +22 (1 + Y. 2)|(1 + 2no¥e) dY
Hy _ 57 m, + -5 o + 2holo o

/Yo(l - Yo)[mo + (1 + Yo):;

(T0=)

where
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(70p)

' ay,
/Yo(l - Yo)[mo + % (1 + Yo)}

Two representations are required for the various static moments defined
by equation (49) to express (T70a) in terms of elliptic integrals. (No such
distinction is needed for the various cubic damping moments that could exist.)
These are as follows:

Hoe 2mp + m, |7 mo 75 71 mo 74
= Sltz=——F)t 2 (FT+——F
H, mg + ms |2 2mp + mo K 2m, + mp
(T1a)
K = K(k) = n/2 do Complete elliptic integral
N A ’ of first kind
J:L - k% sin® @
(T1b)

=
il

n/2 2 . 2 Complete elliptic integral
E(k) =\lf Ji -k sine a9, of second kind

(T1c)

Stable-stable and unstable-stable static moment: (formula 236.16, ref. 12)

7’151%5[(1{2-1)K+E] )
y =12 [(3k* - 5k2 + 2)K + 2(2k2 - 1)E]
2 3k
N 3 > (72)
— 2
72T 52 [4(x™ - 1)y, + 3(1 - ¥7)7,]
2 1 Mo
K =5 n; +ms

Stable-unstable static moment: (formula 234.16, ref. 12)

28




1

71532 (X - E)

7, = —;z [+ k¥3)K - 2(1 + k2)E]

2 3k

> (73)
= [P + 1)y, - 37,
74 = e 7, = 37,
K= 2
+ Mo J

An equivalent expression for Hoe/Ho for a cubic static moment, but a
linear damping moment, that is, hy = O, has been given by Murphy (ref. 5) and
Murphy and Hodes (ref. 6). Murphy obtained his results in a different manner.
He assumed that the damping was small and then used the exact elliptic func-
tions obtained for zero damping in an averaging process over a cycle of motion.
The perturbation method of Murphy thus yields the same value for the effective
damping as the present analysis for a cubic static moment, but it is difficult
to extend the method of Murphy to higher order static moments owing to the
complexities in representing more complicated static-moment solutions by ellip-
tic functions. An approximate formula for H'Oe/HO for a cubic static moment
and linear damping has also been derived by Murphy (ref. 7) by a "quasi-linear'
method, and we will discuss this later in the section entitled, "Comparison for
a Cubic Moment."

Expression (7T1a) for Hbe/Ho in terms of elliptic integrals is actually
a fairly involved formula. Also, the quadratures given by equation (70) are
difficult to evaluate numerically because of their singular nature at both
limits. It is interesting that the effective linear damping can be expressed
by another set of quadratures that possibly may be easier to evaluate numeri-
cally (especially with electronic computers) than either equation (708) or
(7Tla). We obtain this alternate formula by transforming equation (70a) from
the Y, variables to the T varisbles with the use of equations (43), (44),
and (47). The alternate result is

" 2
% _ 2w 2Wotma at
H v DgHio )
o (sin® T+, cosZ T)+4ksin2 THn, cos® 1) +u cos* 1
(e}
/2 2
+ 2h2(2m0+m2) cos® 1 dT -
2
[ksinz T-HI, cos® T)+Jksin2 THI, cos® ) +u cos* %]
o]
(Tha)

where

29



gl<
]
alro

f " dr (7))
o J

. 2
sin? 7 + mgy cos® 7)° + p cos* 7
and

b = mz(2m, + mz)

The above quadratures are proper integrals and can be evaluated numerically
without difficulty. It is worth mentioning that equation (Tha) can easily be
extended to higher order damping terms.

There are several ways in which formulas (7la) and (T4a) can be plotted.
If one is interested in knowing Hoe/Ho for given values of hy and mp, carpet
plots are useful. Such carpet plots are shown in figures 3(a), (b), and (c).
Because of the ease of making linear interpolations, these plots are convenient
to use.

) 2 my=0

(a) Stable-stable 1-3 static moment. (b) Stable-unstable 1-3 static moment.

(c) Unstable-stable 1-3 static moment.

Figure 3.- Carpet plot of effective linear
damping.
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Another method of plotting illustrates how Hoe/HO varies with amplitude

for given values of the damping- and static-moment parameters. We thus plot
Hoe/Ho as a function of my and set hy = (hp/mo)me so that

can be varied as a parameter that does not depend on amplitude for a given
oscillator. These plots are illustrated in figures 4(a), (b), and (c). The
curves denoted by hg/mg = 0 were given by Murphy and Hodes (ref. 6). The

2.0 \
S
\ i -3
2.0 y /// 16
S 3
574 6 7 hy I\ \ \
1.6 g m2 2 \
/ ——— — Asymptote ( 1.2 \\
L2 A A ,}4 :_o,
Ho, / | —=d o
H_o R .8

ol

8 — 220 ,/’//'
N 1 . ey,
W | T+ 1|V

o] 2 4 6 8 10 12 -1.0 -8 -6 -
my m2

lo
/

74
J

(a) Stable-stable 1-3 static moment. (t) Stable-unstable 1-3 static moment.

1.6 7 5 / 3' l
/ 6 |7 ®
/ 2/ — — _ Asymptote

\\

) N
NI
-a N 1

2 4 6 8 10 12
m2

(c) Unstable-stable 1-3 static moment.

Figure 4.- Effective linear damping versus ms.
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curves in figures 4(b) and (c) are singular for the stable-unstable moment at

me = Mpy,Z/Fy = -1 and for the unstable-stable moment at mz = May, /|| = 2.
The dashed lines are the asymptotes for mp * . It is possible to show by an
expansion for large mz that the asymptotes are given by

o ]2 L ) moh ha
(e [5+ (3 v 2o+ F o) 82 ]+ o(0) =

where 2

)
o = 321 N/ , I' = gamma function
)
N
or
hos
Cj%e' = <o.667 + 0.296 ml‘fl 2> +0.7311 (%) mo (75)
o/ asymp : :

Likewise, for the stable-stable and stable-unstable moments, the variation as
me ~ O 1s given by

H h
_EE =1 + <} {% + ﬁg ms + O(m22) (76)

(0]

Another interesting aspect of these curves is the appearance of maxima and
minima in some cases. If these curves were established by experiment, this
behavior might be considered perplexing without theoretical background. They
portray the effects of strong interactions of the nonlinear damping and static
moments. Still another interesting feature is the curve labeled hg/mg = 5/M
in figure 4(b). Detailed examination of equation (T4) shows that this value
is the dividing point between cases where a limit cycle can or cannot exist,
given a stable-unstable static moment. For hz/mg < 5/&, there is no
possibility of a 1limit cycle.

A11 curves shown in figure 4 were compared with results obtained from
numerical integrations of equation (l); In these numerical integrations, var-
ious values of the parameter h = HO/|MO|1/2 were chosen up to a value of
about O.1. This encompasses the practical range of damping encountered in
ballistic-range testing. In all cases, the results of the numerical integra-
tions agreed almost exactly with the results from formula (71a) or (Tka) shown
in figure 4. To the scale these curves are plotted, no differences can be
shown.

When Hy < 0, a limit cycle exists when HOe = 0. The amplitude of the
limit cycle may be found by setting H, = O in equation (7la) or (Tha).

o
Using equation (Tha) we get ©
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w2z dr

.(_hZ)Z = <' Hiijl
4

| 1 A (sin? T4my cos? 7)+f(sin® T4my cos? )%+ cos? T

2(2m_+mz) /2 cos2 T dt

=2

b o [(sinz T+mg cos® 'r)+\/(sin'2 r4mg cos2 T)Z+k cos? -rJ

(17)

An alternate formula is obtained from

\ equation (T7la), which is equivalent to

1 Stable ~unstoble the result found by Murphy and Hodes

(ref. 6) by investigating the singu-

,Stable-stabié lar nature of the limit cycle in an

s amplitude plane. The effect of the

QU8 e cubic static moment on the amplitude

///Mf”‘ of the limit cycle is demonstrated in
\Unstoble - stable figure 5. Except in the region of the

singularities, the effect of mp 1is

. not large, yielding a value of

) (’hg)l = 0.9118 as mp > ® contrasted

to the well-known value (-hp)y =1

-2 0 2 a 6 8 10 2 wWhen mp > O. It will be shown later

"2 that for quintic and higher order
Figure 5.- Amplitude of limit cycle versus mgz. static moments, the effects are much
greater.

Arbitrary One-Term Static Moment

The quadratures in equation (69) can be evaluated in terms of tabulated
functions for the special case of an arbitrary one-term static moment. This
case yields the asymptotic values that are obtained as the highest order term
in an arbitrary polynomial static moment tends to large values.

We now con51der MS ¥ O for s = n, vhere n 1is an even integer. Hence
we choose Mnyn >0 so that mg = 0, s # n, and m, = 1. Expression (69)

now appears as

1
n+2

= s/2
2 + nY." }: heYo  dY

(78a)

<lEe

< o /2
2+ n

Ho,
—< -1
H X
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and -

SCoN ()
[

+2) /2
With the substitution x = Yon 2)/ s these guadratures can be written in the

form of beta functions, which in turn can be evaluated in terms of gamma
functions, I'. For equation (78a), we thus obtain

Ho 4
—}i = Z 7sn s = n o+ )+ + Z 7snhs (798')
§20 s>2

where

s + 1 1 1
_ hi2 + s) F<; + é>F<; T 5)
7sn_2s+l++n 1 s + 1 1
s 2>r<; + 2 +'§>

Although formuls (79) was derived for s one-term static moment, it also
represents the asymptotic value of Ho /Ho for a polynomial static moment in
which the nth term, m,, is dominant 8nd stable and tends to infinity. For
purely linear d ing it is interesting that the asymptotic value is simply
Hoe HO = h/(n +aﬁ§. On the other hand, for a linear static moment, n = O,
equation (79a) can be written

s, n>0

(79b)

H oo -
_°e_=1+gzl35--'(s 1) (79¢)

Redd et al. (ref. 9), considering only a linear static moment, computed
the same value as equation (79¢) up to s = 8 by a different method. Their
conclusion, however, that a nonlinear static moment does not significantly
alter the formula (T9c), except near unstable trim, is not substantiated by the
present analysis. Here it is found that equation (790) is a special case of a
more general formula (79a), and each type of nonlinear static moment may
indeed affect Hog H, significantly.

Expression (79a) may be used to examine the effects of the nonlinear
static moment on the value of the limit amplitude. Consider a two-term damp-
ing moment given by Hg = O when s # 0 or k (k even) so that the first term
is linear and the second term is nonlinear of arbitrary order. The limit cyecle
occurs when Hy < O and may be determined by setting Hp, = O to obtain
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( hk)l [(2 + k)H, Va ]l (o + ¥)r (80)

The value of ('hk)l is a function of both k and n, and some of the
values of (‘hk)z are given in the following tsble:

k 2 4 6 8

1.000 1.333 1.600 1.829
912  1.167 1.368 1.540
870 1.084 1.250 1.392
Bhs 1,034 1.178  1.300
829 1.001 1.130 1.238
.50 .833 875 .900

n

8 OO+ VO

It can be seen from this table that the value of ('hk)l decreases for a
given value of k as n increases. Here we recall that n = O represents a
purely linear static moment.

Expansion for Small Static-Moment Nonlinearities

Consider the value of Hoe/Ho when the nonlinearities in the static
moment are small. Here we assume E% > 0 so that m, = 1, and we assume that
mg 1is small so that higher order products and cross-products can be neglected.
With these conditions, it is possible to expand equation (69) for small mg
and evaluate each integral term by term. The result can be written as follows

Ho
TZ. = Z e f2T(k - 1) - Z bgsmg| + higher order products of mg
>0 s>2

(81a)
wvhere

Pys = 3 i - [(k +2)I(s +k +1) + (s - X)I(x - 1) - (s +2)I(k - 1)I(s + 1)]

(81p)
1 n/2
I(n)=%f _E___dzl_/_é
° (1-12)
=1, n=-1
_132 - - 2 n odd (81c)
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Some of the values of bks for various values of k and s are tabulated as
follows:

Xk O 2 L 6 8
S
2 L 2l L _105
2 8 N 128 8 1024
N 1l 31 _33 19 125
12 96 128 96 768

¢l 279 121 657 127 13415
256 256 2048 512 65536

g| 193 171 939 1169 TT45
160 320 2560 L0og6 32768

o 3 2
e 1 I 8 %%

Expression (76) for the cubic damping and cubic static moment is a special
case of (8la). Formula (8la) will be of use in the construction of a general

approximate formula for Hoe/Ho‘

APPROXTIMATE GENERAL FORMUIA FOR HOe/Ho

Although the formal representation (69) is a very general result, it is
difficult to evaluate for arbitrary combinations of the damping and static
moments. Even for the cubic case, the evaluation in terms of elliptic inte-
grals is rather complicated. Based on the special cases (79) and (81), how-
ever, it is possible to construct an approximate formula that is extremely
accurate.

A perusal of the formal solution (69) indicates that Hy, /Ho can be
expressed by

Hoe _ 2; 20 Iy, (82)

where ayg and Byg are functions of the parameters mg,mo,my,. . . . The
functions o g and Byg depend only weakly on these parameters, however, and
thus we wish to find approximate values of axg and Bgxg that are independent
of mg,Mz2,My,. « » . We can do this by requiring that equation (82) nave the
proper behavior when the nonlinear static moment is very large and stable and
when the nonlinear static moment is very small; that is, equation (82) should
have the same behavior as (79) and (81) in these particular limits.
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. Formula (82) is thus guaranteed to be valid when the dominant term

MesMe,Myy - « « > ®© and also when the terms Mo,Mp,M, s « « « > 0.
We begin, somewhat arbitrarily, by requiring that Bgo = 1. We do this
in order to agree with the leading term of the sum sgoms that appears in the

denominator of equation (69). It can be shown that if equation (82) is to
reduce to both (79) and (81) in these respective limits, then axg and Bks
are given by

e = 2I(k - 1) ,  Bgo=1
(83)

by .7

ks’ks ks

aks= - ’ Bks— -
%o ~ ks %o ks

where 7jg» byg» and I(n) are defined by equations (79b), (81b), and (81c).
Some values of Qe o and Bks are presented in the following tables.%

ks
4 5 6 7 8

'
o
)
Mo
w

2.0000 1.2732 1.0000 0.8488 0.7500 0.6791 0.6250 0.5821 0.5469
1.5349 1.0095 .8065 .6913 .6143  .5582  .5147 4797  .L4510
1.2500 .8398  .6797 .5875 .5250 4788  .bhk28 4136 .3895
1.0568  .7208  .5894  .5130  .b608 4218  .3912  .3663  .3453
9167 .6323  .5213 4565 k118 3784 .3519 .3301 .3118
.8102 5639  .46T79 L4118 L3731 .3439 .3206 .3014  .2851
L7266 5092 Jheko o (37560 W3415 0 .3156 L2950 2779 .2633
6589  .heks 389k 3456 3152 L2920 .2735  .2581 .2450
6031  JhaTe 3596 .3202 .2928 L2720 .2552 .2k13 229k

0 0 0 0 0 0 0 0 0

8 W~NO\\U HFWN MO

“Note that g and By are given for both even and odd values of k
and s. We are still considering only symmetric oscillations, but can extend
the analysis to cases where k and/or s are odd by insisting that both the
static moment and damping moment be odd functions of the dependent variable.
This is done by employing absolute values where needed. For instance, a qua-
dratic static moment would be written as M = M)y + Mlylyl-
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NE 0 1 2 3 i 5 6 7 8

0} 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1 9593 9575  .9542  .9505  .9h68  .9k3h 9399  .936h  .9337
2 9375  .9346  .9297 .9243  .9188 .9135 .9084  .9038  .8997
3 9247 L9211 L9155  .9091  .9027  .896k (8905  .8850  .8797
L 9167  .9127  .9067  .8998  .8929  .8861 .8797 .8735  .8677
5 9115 .9073 .9011 .89k0  .8868 .8798 .8729 .8665  .8603
6 9082  .9039 .8975 .8904  .8831 .8758 .8688 .8621 8558
7 .9060 .9016  .8953 .8882  .8808 .8735 .8664  .8596 .8530
8 9047  .9003 .8940  .8868 .8795 .8T722  .8650 .8582  .8516
o | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Comparison for a Cubic Moment

For a cubic moment, equation (82) looks as follows

H . .
Og _ Mo + 0.6250ms , o + 0.679Tms e 4 . .. (84)
Ho mg + 0.935ms mg + 0.929Tmo

The accuracy of this expression can be demonstrated in several ways. First,
we will compare equation (84) with the exact solution (71) or (T4) when only
linear damping is present (hs = hy=...= hp = 0). In this way we can also
compare an approximate formula that is given by Murphy in reference 7, which,
in our notation, is

Hog _ my + (3/4)me (o)
Ho my + (9/8)mz

For the sake of comparison, we write the corresponding case of (84) with
fractions as

Hoe  mg + (5/8)ma
Hy ~ my + (15/16)ms (86)

Both of these formulas have the correct limit as mp = « (Hoe/Ho = 2/3),
but when mg = 1, formula (85) does not quite have the correct behavior as
mp = 0, yielding H'Oe/HO =1 - (3/8)mz + 0(me2) instead of the exact value
Hoe/Ho =1 - (5/16)m2 + 0(mz®) of the present analysis. For the stable-stable
moment the approximate formula (86) is practically indistinguishable from the
exact solution when plotted on the same graph, and (85) is also a good approx-
imation for this case. These results are shown in figure 6(a). The main
deviations occur in the stable-unstable and unstable-stable moments near the
singular points, which we illustrate in figures 6(b) and (c). The approximate
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(a) Stable-stable 1-3 static moment. (b) Stable-unstable 1-3 static moment.
68 Asymptoté _—
r——___;:_—_r_::
.60
52 l
/ T~ Exact (71, 74)
Ho, /
—= 44 f
Ho
2 5
ma
.36 ﬂ
.28
’200 2 4q 6 8 10 12

M2

(¢) Unstable-stable 1-3 static moment.

Figure 6.- Comparison of spproximate solutions
with exact solution.

formula (86) of the present method is seen to agree very well with the exact
curve except in the immediate vicinity of the singular points, which are

mp = -1 for the stable-unstable moment and mp = 2 for the unsteble-stable
moment. The present approximation (86) is obviously superior to the approxi-
mate formula (85).
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The next check that we can make on the sccuracy of equation (84) is to

allow ho to be nonzero.

A number of different cases were investigated, and

one example for each type of linear-cubic moment is shown in figure 7.

Figure 7(a) shows results for a stable-stable moment.

The magnitude of the

nonlinearities being considered on this plot can be visualized by observing

T
Eq.(84)
— = £q.(74)

O Numerical
integration

14
\
13K
10 T T T
Dot
ma 16
M

P

oIlmoI
i
/
/
/
{
=

Asympto!e"
1.0
——— £a.{75)
2 Eqs.(74),(84)
O Hp>0, H
o Hg<8: Hii(o)} Numerical integration 3
L | .
0 2 4 6 8 10 12 =8
i my

(a) Stable-stable 1-3 static moment; stable-
unstable or unstable-stable 1-3 damping
moment «

LN

1
he ..

_L
3

N

AN
. N

Hoe t
Ho
dt NN
‘ ; v
08 ——Ty
: Eq.(84)
O Numerica!l integration
[ 1 ]
0] 2 4 6 8 10 12
m
2
(¢) Unstable-stable 1-3 static moment; stable-

unstable or unstable-stable 1-3 damping

moment »

Figure T7.- Comparison of present analysis with
numerical integrations.
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(b) Stable-unstable 1-3 static moment;
unstable or unstable-stable 1-3 damping
moment .
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“the small-scale plots of static and damping moments that appear. These are
accurate representations of the nonlinearities, not sketches, and indicate a
wide departure from a linear system. The first thing to note in this figure is
that equation (84) agrees to this scale exactly with equation (T71) or (T4),
which in turn agrees exactly with numerical integration of equation (1). The
second thing to note is that a negative hp/ms (recall that the parameter
ha/ﬂg is a constant, independent of amplitude, for a given oscillator) can be
obtained in two ways, Hy negative and Hy positive or Hy positive and Ho
negative. The first case leads to a 1limit cycle, the second at a high enough
amplitude to an unstable situation. The surprising thing is that HOe/Ho is
the same for both of these cases, a fact that was revealed in the analysis but
is not intuitively obvious.

Also indicated in figure T(a) is the asymptotic behavior of Hoe/Ho as
given by equation (75). It can be shown that expanding equation (84) for large
mp (with h hg, . . . = 0) yields the same values as equation (75), except
that the coefficient of mohg/mg is 0.289 instead of the more exact value
0.296.

Figures 7(b) and (c) show representative cases for the stable-unstable and
unstable-stable static moments. Once again the magnitude of the nonlinearities
being covered is shown by the small-scale plots. For both of these cases, the
accuracy of equation (84) is not as good as it was for the stable-stable
moment, but the agreement is still excellent except in the immediate vicinity
of the singular points. The final point to be made is that the curves for the
limit amplitude, (-hg)zy presented in figure 5, can be closely duplicated by

equation (84) except, again, in the immediate vicinity of the singular points.

Comparison for a 1-9 Moment

A more extreme nonlinear case was next investigated to check the adequacy
of the approximate solution (82). A 1-9 static moment and a 1-3 damping
moment (M, ,Mg,Ho,Ho # 0) were considered. For this case, equation (82)
appears as

Ho

e _ Uo * 0.3016m L Dot 0.3596m B

(87)
Hy mg + 0.90kTm_  mo + 0.8940mg

In this case, the closed-form solution (69) involves hyperelliptic integrals
and cannot be evaluated by simple means, but a comparison can be made with
results of numerical integrations of equation (1). These comparisons are made
in figure 8 for a stable-stable and unstable-stable static moment. (The
stable-unstable case is not too interesting in that the moment is essentially
linear almost to the singular point and then suddenly goes unstable.) Instead
of the parameter hg/mg, which was pertinent for the cubic moment, the param-
eter that remains constant for a given oscillator is now 1123|h2|/m8. The
comparisons show that the approximate solution is not so good as it was for a
linear-cubic static moment. However, for the stable-stable case, agreement is
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still excellent. For the unstable-stable case, agreement is satisfactory
except close to the singular point (i.e., mg = 5).

1.2

£q.(87)
\ M = =~ Numerical integration G
10 ) ——— £q.(87)
\ y M 0264, ——= Numericaf
integration
N - r ;’)J
8 = y ///f\
) $ — PRGN
- . -
- 7 " +
\ 0264 Y 4 Y4 H
Oe I :
Ho ® \\. H Ho, / ,/ y
3
\ L | y Ho 7 ch2lhal .
HL._ - m
4 -~ | 8
hp®lhal .- I > =
mg (/,/
\ + a'/
i ~—1 [ % ’ = B
-, - y
> 4 -0264
-.0264 4
o} 2 4 6 8 10 12 04 6 8 10 12 14 16 18
mg mg
(a) Stable-stable 1-9 static moment; 1-3 (v) Unstable-stable 1-9 static moment; 1-3
damping moment . damping moment.

Figure 8.- Comparison of present analysis with
numerical integrations.

Comparison for a 1-3-5 Moment

The final comparison that was made was for a 1-3-5 static moment in con-
Junction with several different damping moments, the most nonlinear of which
was also 1-3-5. For this case, equation (82) appears as

Hog mgy + 0.6250mz + 0.4583m, LMo+ 0.679Tmz + 0.5213m,
Ho  mo + 0.9375mp + 0.916Tm, mo + 0.929Tmy + 0.9067m, -

.\ 0.7500m, + 0.5250mp + 0.4118m,
me + 0.9188mz + 0.8929m,

n, (88)

Too many possibilities exist to cover this case in general. Hence, a particu-
lar 1-3-5 static moment was selected as being very nonlinear, a stable-stable-
unstable moment. This moment is shown in figure 9(a). Three different
damping moments were then chosen, consisting of the following: (1) linear
term only, (2) linear-cubic, and (3) linear-cubic-quintic. The three damping
moments are shown in figure 9(b). Note that they were selected so that the
average value of the damping moment between 0° and 20° was the seame in each
case.
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(a) 1-3-5 static moment. (b) Damping moments.
Figure 9.- Moments used for more complex
comparisons.
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(l@ Equation (88) is compared with
18~ @ n-028 . > mumerical “integrations of equation (1)
@ H=.014 + DO0IOSy . .
@ H=014+.000315y2 - DO0000B75y o for the three cases in figure 10. To
—— Eq.(88) | the scale plotted and for the range
L8[~ O Numerical mtegration / / covered, no differences existed.
Ho / / All of these comparisons that
T, 4 have been presented indicate that
equation (82) is surprisingly accurate
over a wide range of nonlinearities in
12 - both the static and damping moment.
/ With this estsblished, we will next
/ concern ourselves with determination
,‘o_< : 4 of the coefficients Mg and Hy from
o / data.
\o\ oo
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Y. 0eg

Figure 10.- Comparison of present analysis with
numerical integrations; 1-3-5 static moment;
various damping moments.
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DETERMINATION OF NONLINEAR PARAMETERS FROM DATA *

Formula (82) with (83) can be useful in determining the nonlinear damping
parameters of an oscillator from a set of observed oscillations. Iet us assume
that a given oscillator is governed by the differential equation (1). We wish
to infer from observed oscillations the appropriate values of HO,HZ,H4, e o .
and MO;Mg,M4, e e e e

We assume that the damping is small so that h = HO/V << 1 (or more
appropriately, since Vv = Iﬂnyanll/g is actually arbitrary, we could also say
Ho/w << 1, where ® is the frequency and is proportional to v). This assump-
tion is normally satisfied in ballistic-range testing. In addition, we assume
that the frequency and maximum amplitudes for each half cycle of the motion
can be accurately determined from the data. The effective linear damping for
each half cycle is then computed by

(89)

Yn+1

Using an approximation for the frequency quadrature (eq. (67Tb)) that is
developed in reference 13, we can write an expression for the frequency as a

function of the parameters My,M;,Mz, . . . as
2 Y A— n
W= = My + nMnya, (90a)
n>o
where

Ay = [1 - @) %ﬁ} (90b)

This formula is a good approximation for large and small nonlinearities, except
in the vicinity of the singular points of static instability. The understand-
ing and use_of equation (90a) makes it possible to extract the appropriate
values of M, by fitting equation (90a) to a set of frequency versus amplitude
data that has been measured for a given oscillator. For instance, if an
oscillator is governed by a linear-cubic static moment, then equation (90)
yields

w? = M Moya®

o Tt

=

The frequency squared then gives a straight line when plotted against yaz.

The slope of the curve yields the value of M> and the w? intercept yields
M,. When h << 1, we note that M, = M [1 + 0(h®)]. Hence, for small damping,
the values of the actual static parameters (Mn) are determined. The cubic
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o Moment is the simplest case; for more general cases the static moment polyno-
mial (eq. (90a)) is terminated so that an adequate fit of the frequency versus
maximum amplitude data is obtained (ref. 13).

A similar but slightly more complicated situation exists for determining
the damping parameters Hp. In this case, the static parameters play an impor-
tant role, whereas for the determination of the static-moment parameters M,
the effect of the damping parameters can be neglected. The formula for Hoe
as a function of Hy,H,,Hz, . . . can be written as

Hog = Bollo + Z BuHpyg (912)
3 n>o

where equation (69) is used to determine B, as

1 m £t2
- (13/2;)2—735(2+syz ay
B, = Ty (911)
(2 + n) Z m S+2
° Y s (1-y¢2
§20 J 2 + 5
820
o 2>
or, from equations (82) and (83), approximately as
= s
2 ansMsYa
_ _1 820
Bn T 2+4+n : _ (91c)
BnMeya”
S20

Expression (91a) is analogous in form to (90a). In this case, however, the
coefficients B, are functions of Mg,M;,Mp, . . . and y,, whereas the coef-
ficients A, are constants. In the determination of the damping, however, the
static parameters can be regarded as already determined by the use of (90).
Hence, the coefficients B, are functions of yg insofar as determination of
the damping is concerned.

It is now useful to divide both sides of equation (91a) by By, obtaining

Ho B
e oy z.ﬁﬁnnyan (92)
n>o
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Because Bg,B;,B2, . . . each vary with yg; in a similar manner, the ratios
Bn/BO vary slowly with y5. Equation (92) can now be used to study a set of ®
damping data in a manner analogous to studying frequency data with

equation (90).

As a simple example, assume that a set of data for a given oscillator has
been obtained and that the static moment, completely arbitrary, has been deter-
mined with the use of formula (90). Iet it be assumed that the damping moment
can be described by a linear term and a single arbitrary nonlinear term so
that (92) appears as Hy B

- = Ho + 22 Hpy," (93)
o] o
where n 1is not known. Choosing a particular value of n determines Bn/Bo.
Then one can plot Hoe/BO versus (Bn/BO)yan. When the right value of n 1is
chosen, the data will fall on a straight line. The slope of the line yields
Hy, and the intercept of the line with the Hbe/Bo axis yields H,. This will
be true regardless of the particular form of the static moment.

For an arbitrary damping moment described by a given set of data over an
amplitude range, there may be several or many combinations of the parameters
Hg,Hi,Ho, « o« that will fit the data. This situation also occurs in deter-
mining the static-moment parameters (ref. 13). One must often settle for a
member of a class of moments that gives a good fit. Thus, a certain amount of
experience may be useful in analyzing the data. For a set of data including

030 small angles of y, as well as large,
’ 4 one should plot the damping data as
//\“$we=oooy5 Hbe/Bo versus (Bg/Bo)ya2 (or as a first
/ l try against yz2 since B2/BO varies
026 g ® slowly with y,). If the data fall on
/ a straight line, the damping moment is
/ a cubic as described by (93) with
n =2. If the data deviate from a
022 ;f o straight line, which might be expected
/ ///// to occur at larger values of Yy, one
Bo /] can estimate the magnitude and sign of
)7/ ,/////// the next higher order damping term
018 V. - needed to fit the data. In such a man-

///Kifj ) ner the appropriate form of damping
Slope = 000105 polynomial tends to suggest itself.

~

014 The more data that are available,
the better the damping moment can be
defined. Finally the data can be
fitted by some curve-fitting technique
0105 5 20 0 go Tor various combinations of damping
By parameters. The combinations that fit
L | , 1 the data best are the appropriate ones

04 8 12 16 to represent the damping moment.

In figure 11 the results of fig-
Figure 1l.- Form of data to reveal type of ure 10 are plotted in the manner sug-
nonlinearity in damping. gested. Results for the linear-cubic
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damping moment fall on a straight line as expected. The deviation of the
®1-3-5 damping data from a straight line indicates that the damping moment is
more complicated than linear cubic; the fact that the results curve downward
from a straight line indicates that the next higher order term required is a
destabilizing term, which is, in fact, the case.

CONCLUDING REMARKS

The preceding investigation has considered the effects of nonlinearities
on damped oscillations. It was found that this investigation could be con-
ducted analytically in two ways. With large damping nonlinearities and small
"effective" static-moment nonlinearities, an approximate solution could be
established by means of an integral equation. On the other hand, when the
damping is small but the static nonlinearities arbitrarily large (a common sit-
uation in aerodynamics), an approximate solution could be ocbtained by means of
an equivalent first-order differential equation.

When the damping is small and the static nonlinearities large, it is con-
venient to study the characteristics of the nonlinear oscillations by means of
a parameter called the "effective linear damping."” This parameter is readily
cobtainable from experiment and offers a means of deducing the nonlinear damp-
ing characteristics of an oscillator from a set of observed oscillations.
Comparisons with some exact solutions and with numerical solutions showed that
the approximate formula derived herein for the effective linear damping is
extremely accurate over a wide range of nonlinearities. The limit cycle of a
nonlinear oscillation occurs when the "effective linear damping" is zero, and
the limiting amplitude is easy to obtain for various combinations of the non-
linear damping and static moments. The concept of an "effective linear
damping" is thus very useful in analyzing nonlinear damping.

The integral equation (36) and the first-order equation (39) are believed
to be novel formulations for nonlinear oscillation problems. It is possible
that further investigation of these equations would be fruitful.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., June 27, 1966
124-07-02-11-21
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APPENDIX A
MODIFIED EQUATIONS OF KRYLOFF AND BOGOLIUBOFF

Here we wish to modify the approximation methods of Kryloff and
Bogoliuboff (ref. 4) for nonlinear oscillations so that the pertinent equations
fit conveniently into the framework of the present analysis. We shall forego
the Fourier series expansions of the usual Kryloff-Bogoliuboff analysis and
find forms of the amplitude and frequency equations that are amenable to appro-
priate transformstions that in turn yield a basic exact solution as a special
case.

Following Kryloff and Bogoliuboff, consider a nonlinear equation of the
following form:

2
d }2( + V2X = _fé{, _g%j (Al)
dt

where f 1is an arbitrary function of x and dx/dt. If f = 0, then the solu-
tion is given by

x = a cos(vt + @) (A2)

where a and ¢ are arbitrary constants. For the general equation (A1), we
assume equation (A2) to be a solution with a = a(t) and @ = @(t) suitably
determined functions of +t.

Iet us choose a(t) and 9(t) by following the method of variation of
parameters for linear systems. The derivative of equation (A2) is

% = %% cos(vt + ) - a</ + g%) sin(vt + @) (a3)

Since we have two functions to determine, a(t) and ¢(t), we have two conditions
at our disposal. One, of course, will be the original differential equa-
tion {Al). The other we choose as

da -5 3 o =
= cos{(vt +9) - a m sin{vt + @) = O (Al)

so that equation (A3) now reads simply

%% = -av sin(vt + @) (A5)
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st as for the case f = 0. Differentiating equation (A5) and substituting
into the original equation (A1), we get

98 sin(vt +9) +a %% cos(vt + @) = % fla cos(vt + @), -av sin{vt + @)]

at
(46)

Expressions (A4) and (A6) are two equations for da/dt and dp/dt. Solving
for da/dt and d9/dt, we obtain

%% = % fla cos(vt + @), -av sin(vt + @)lsin(vt + @) (ATa)
%% = é% fla cos(vt + @), -av sin(vt + @) lcos(vt + @) (ATb)

These are the basic equations of Kryloff and Bogoliuboff.

Egquations (ATa, b) are coupled and thus must be solved simultaneously.
Equation (ATa) can be uncoupled, however, if we introduce, in place of t, a
new independent variable + defined as follows:

T=VvLt + @ (A8&)
It follows that
dr _ _ v __
at = ~ (A8b)
- dr

Equations (ATa, b) may now be written in terms of T as follows:

QE f(a cos T, -av sin T)sin 7
da _ _ ¥ (A9a)

1 .
1 +—= f(a cos T, -av sin T)cos T
ave ?

. —15 f(a cos 7, -av sin T)cos T
e (49p)
dr 1 .
1 +—=; f(a cos 1, -av sin T)cos 7
av
ar _ 1+ —;;-f(a cos T, -av sin T)cos T (A9c)
dt ) av2

We shall term equations (A9a, b, c¢) the modified Kryloff-Bogoliuboff equa-
tions. Equations (A9a) and (A9c) are the pertinent ones since the solution to
equation (A1) is given by y = a(t)cos . Equation (A9a) is a first-order

k9



nonlinear equation for a as a function of T, and it is uncoupled from the
other two. When it has been solved, the other equations can be solved at least

by quadratures.
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